A vacuum manifold for rapid world-to-chip connectivity of complex PDMS microdevices.

نویسندگان

  • Gregory A Cooksey
  • Anne L Plant
  • Javier Atencia
چکیده

The lack of simple interfaces for microfluidic devices with a large number of inlets significantly limits production and utilization of these devices. In this article, we describe the fabrication of a reusable manifold that provides rapid world-to-chip connectivity. A vacuum network milled into a rigid manifold holds microdevices and prevents leakage of fluids injected into the device from ports in the manifold. A number of different manifold designs were explored, and all performed similarly, yielding an average of 100 kPa (15 psi) fluid holding pressure. The wide applicability of this manifold concept is demonstrated by interfacing with a 51-inlet microfluidic chip containing 144 chambers and hundreds of embedded pneumatic valves. Due to the speed of connectivity, the manifolds are ideal for rapid prototyping and are well suited to serve as "universal" interfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfabricated glass devices for rapid single cell immobilization in mouse zygote microinjection.

This paper presents the design and microfabrication of a vacuum-based cell holding device for single-cell immobilization and the use of the device in mouse zygote microinjection. The device contains many through-holes, constructed via two-sided glass wet etching and polydimethylsiloxane (PDMS)-glass bonding. Experimental results of mouse zygote immobilization and microinjection demonstrate that...

متن کامل

A Rapid and Low-Cost Nonlithographic Method to Fabricate Biomedical Microdevices for Blood Flow Analysis

Microfluidic devices are electrical/mechanical systems that offer the ability to work with minimal sample volumes, short reactions times, and have the possibility to perform massive parallel operations. An important application of microfluidics is blood rheology in microdevices, which has played a key role in recent developments of lab-on-chip devices for blood sampling and analysis. The most p...

متن کامل

Microfluidic devices for culturing primary mammalian neurons at low densities.

Microfluidic devices have been used to study high-density cultures of many cell types. Because cell-to-cell signaling is local, however, there exists a need to develop culture systems that sustain small numbers of neurons and enable analyses of the microenvironments. Such cultures are hard to maintain in stable form, and it is difficult to prevent cell death when using primary mammalian neurons...

متن کامل

PMMA/PDMS valves and pumps for disposable microfluidics.

Poly(methyl methacrylate) (PMMA) is gaining in popularity in microfluidic devices because of its low cost, excellent optical transparency, attractive mechanical/chemical properties, and simple fabrication procedures. It has been used to fabricate micromixers, PCR reactors, CE and many other microdevices. Here we present the design, fabrication, characterization and application of pneumatic micr...

متن کامل

Monolithic PDMS passband filters for fluorescence detection.

We present the fabrication and characteristics of monolithically integrated ink dyed poly(dimethylsiloxane) (PDMS) filters for optical sensing in disposable lab-on-a-chip. This represents a migration of auxillary functions onto the disposable chip with the goal of producing truly portable systems. Filters made from commercially available ink (Pelikan) directly mixed into PDMS oligomer without t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lab on a chip

دوره 9 9  شماره 

صفحات  -

تاریخ انتشار 2009